The Urinary System

- Functions of the urinary system
- Anatomy of the kidney
- Urine formation
 - glomerular filtration
 - tubular reabsorption
 - water conservation
- Urine and renal function tests
- Urine storage and elimination

Urinary System

 Two kidneys -• Two ureters • Urethra

Kidney Functions

- Filters blood plasma, eliminates waste, returns useful chemicals to blood
- Regulates blood volume and pressure
- Regulates osmolarity of body fluids
- Secretes renin, activates angiotensin, aldosterone
 controls BP, electrolyte balance
- Secretes erythropoietin, controls RBC count
- Regulates P_{CO_2} and acid base balance
- Detoxifies free radicals and drugs
- Gluconeogenesis

Nitrogenous Wastes

- azotemia: nitrogenous wastes in blood
- uremia: toxic effects as wastes accumulate

Excretion

- Separation of wastes from body fluids and eliminating them
 - **respiratory** system: CO₂
 - integumentary system: water, salts, lactic acid, urea
 - digestive system: water, salts, CO₂, lipids, bile
 pigments, cholesterol
 - urinary system: many metabolic wastes, toxins, drugs, hormones, salts, H⁺ and water

Anatomy of Kidney

- Position, weight and size
 - retroperitoneal, level of T12 to L3
 - about 160 g each
 - about size of a bar of soap (12x6x3 cm)
- Shape
 - lateral surface convex; medial concave
- CT coverings
 - renal fascia: binds to abdominal wall
 - adipose capsule: cushions kidney
 - renal capsule: encloses kidney like cellophane wrap

Anatomy of Kidney

- Renal cortex: outer 1 cm
- Renal medulla: renal columns, pyramids papilla
- Lobe of kidney: pyramid and it's overlying cortex

Lobe of Kidney

Kidney: Frontal Section

• Minor calyx: cup over papilla collects urine

Path of Blood Through Kidney

- Renal artery
 - → interlobar arteries (up renal columns, between lobes)
 - \rightarrow arcuate arteries (over pyramids)
 - \rightarrow interlobular arteries (up into cortex)
 - \rightarrow afferent arterioles
 - → glomerulus (cluster of capillaries)
 - \rightarrow efferent arterioles (near medulla \rightarrow vasa recta)
 - → peritubular capillaries
 - \rightarrow interlobular veins \rightarrow arcuate veins \rightarrow interlobar veins
- Renal vein

Blood Supply Diagram

Renal Corpuscle

Renal (Uriniferous) Tubule

- Proximal convoluted tubule (PCT)
 - longest, most coiled, simple cuboidal with brush border
- Nephron loop U shaped; descending + ascending limbs
 - thick segment (simple cuboidal)
 initial part of descending limb
 and part or all of ascending limb,
 active transport of salts
 - thin segment (simple squamous)
 very water permeable
- Distal convoluted tubule (DCT)
 - cuboidal, minimal microvilli

Renal (Uriniferous) Tubule 2

- Juxtaglomerular apparatus: DCT, afferent, efferent arterioles
- Collecting duct: several DCT's join
- Flow of glomerular filtrate:
 - glomerular capsule → PCT →
 nephron loop → DCT → collecting
 duct → papillary duct → minor calyx
 → major calyx → renal pelvis →
 ureter → urinary bladder → urethra

Nephron Diagram

Nephrons

- True proportions of nephron loops to convoluted tubules shown
- Cortical nephrons (85%)
 - short nephron loops
 - efferent arterioles branch off peritubular capillaries
- Juxtamedullary nephrons (15%)

 very long nephron loops, maintain salt gradient, helps conserve water
 - efferent arterioles branch off vasa recta, blood supply for medulla

Urine Formation Preview

- Glomerular filtration Creates a plasmalike filtrate of the blood
- 2 Tubular reabsorption Removes useful solutes from the filtrate, returns them to the blood
- ③ Tubular secretion Removes additional wastes from the blood, adds them to the filtrate
- Water conservation Removes water from the urine and returns it to blood, concentrates wastes

Filtration Membrane Diagram

Filtration Membrane

- Fenestrated endothelium
 - 70-90nm pores exclude blood cells
- Basement membrane
 - proteoglycan gel, negative charge
 excludes molecules > 8nm
 - blood plasma 7% protein, glomerular filtrate 0.03%
- Filtration slits
 - podocyte arms have pedicels with negatively charged filtration slits, allow particles < 3nm to pass

Filtration Pressure

Glomerular Filtration Rate (GFR)

- Filtrate formed per minute
- Filtration coefficient (K_f) depends on permeability and surface area of filtration barrier
- GFR = NFP x $K_f \approx 125$ ml/min or 180 L/day
- 99% of filtrate reabsorbed, 1 to 2 L urine excreted

Effects of GFR Abnormalities

- ↑GFR, urine output rises → dehydration, electrolyte depletion
- \downarrow GFR \rightarrow wastes reabsorbed (azotemia possible)
- GFR controlled by adjusting glomerular blood pressure
 - autoregulation
 - sympathetic control
 - hormonal mechanism: renin and angiotensin

Renal Autoregulation of GFR

- ↑ BP → constrict afferent arteriole, dilate efferent
- \downarrow BP \rightarrow dilate afferent arteriole, constrict efferent
- Stable for BP range of 80 to 170 mmHg (systolic)
- Cannot compensate for extreme BP

Negative Feedback Control of GFR

Sympathetic Control of GFR

- Strenuous exercise or acute conditions (circulatory shock) stimulate afferent arterioles to constrict
- ↓ GFR and urine production, redirecting blood flow to heart, brain and skeletal muscles

Hormonal Control of GFR

Effects of Angiotensin II

Tubular Reabsorption and Secretion

Peritubular Capillaries

- Blood has unusually high COP here, and BHP is only 8 mm Hg (or lower when constricted by angiotensin II); this favors reabsorption
- Water absorbed by osmosis and carries other solutes with it (solvent drag)

Proximal Convoluted Tubules (PCT)

- Reabsorbs 65% of GF to peritubular capillaries
- Great length, prominent microvilli and abundant mitochondria for active transport
- Reabsorbs greater variety of chemicals than other parts of nephron
 - transcellular route through epithelial cells of PCT
 - paracellular route between epithelial cells of PCT
- Transport maximum: when transport proteins of plasma membrane are saturated; glucose > 220 mg/dL remains in urine (glycosuria)

Tubular Secretion of PCT and Nephron Loop

- Waste removal
 - urea, uric acid, bile salts, ammonia, catecholamines, many drugs
- Acid-base balance
 - secretion of hydrogen and bicarbonate ions regulates
 pH of body fluids
- Primary function of nephron loop
 - water conservation, also involved in electrolyte reabsorption

DCT and Collecting Duct

- Effect of aldosterone
 - $-\downarrow$ BP causes angiotensin II formation
 - angiotensin II stimulates adrenal cortex
 - adrenal cortex secretes aldosterone
 - aldosterone promotes Na⁺ reabsorption
 - Na⁺ reabsorption promotes water reabsorption
 - water reabsorption \downarrow urine volume
 - BP drops less rapidly

DCT and Collecting Duct 2

- Effect of atrial natriuretic factor (ANF)
 - ↑ BP stimulates right atrium
 - atrium secretes ANF
 - ANF promotes Na⁺ and water excretion
 - BP drops
- Effect of ADH
 - dehydration stimulates hypothalamus
 - hypothalamus stimulates posterior pituitary
 - posterior pituitary releases ADH
 - ADH ↑ water reabsorption
 - urine volume \downarrow

Collecting Duct Concentrates Urine

Control of Water Loss

- Producing hypotonic urine
 - NaCl reabsorbed by cortical CD
 - water remains in urine
- Producing hypertonic urine
 - GFR drops
 - tubular reabsorption \uparrow
 - less NaCl remains in CD
 - ADH ↑ CD' s water permeability
 - more water is reabsorbed
 - urine is more concentrated

Countercurrent Multiplier

- Recaptures NaCl and returns it to renal medulla
- Descending limb
 - reabsorbs water but not salt
 - concentrates tubular fluid
- Ascending limb
 - reabsorbs Na⁺, K⁺, and Cl⁻
 - maintains high osmolarity of renal medulla
 - impermeable to water
 - tubular fluid becomes hypotonic
- Recycling of urea: collecting duct-medulla – urea accounts for 40% of high osmolarity of medulla

Countercurrent Multiplier of Nephron Loop Diagram

Countercurrent Exchange System

- Formed by vasa recta
 - provide blood supply to medulla
 - do not remove NaCl from medulla
- Descending capillaries
 - water diffuses out of blood
 - NaCl diffuses into blood
- Ascending capillaries
 - water diffuses into blood
 - NaCl diffuses out of blood

Maintenance of Osmolarity in Renal Medulla

Summary of Tubular Reabsorption and Secretion

Composition and Properties of Urine

- Appearance
 - almost colorless to deep amber; yellow color due to urochrome, from breakdown of hemoglobin (RBC's)
- Odor as it stands bacteria degrade urea to ammonia
- Specific gravity
 - density of urine ranges from 1.000 -1.035
- Osmolarity (blood 300 mOsm/L) ranges from 50 mOsm/L to 1,200 mOsm/L in dehydrated person
- pH range: 4.5 8.2, usually 6.0
- Chemical composition: 95% water, 5% solutes – urea, NaCl, KCl, creatinine, uric acid

Urine Volume

- Normal volume 1 to 2 L/day
- Polyuria > 2L/day
- Oliguria < 500 mL/day
- Anuria 0 to 100 mL

Diabetes

- Chronic polyuria of metabolic origin
- With hyperglycemia and glycosuria
 - diabetes mellitus I and II, insulin hyposecretion/insensitivity
 - gestational diabetes, 1 to 3% of pregnancies
 - pituitary diabetes, hypersecretion of GH
 - adrenal diabetes, hypersecretion of cortisol
- With glycosuria but no hyperglycemia
 - renal diabetes, hereditary deficiency of glucose transporters
- With no hyperglycemia or glycosuria
 - diabetes insipidus, ADH hyposecretion

Diuretics

- Effects
 - \uparrow urine output
 - $-\downarrow$ blood volume
- Uses
 - hypertension and congestive heart failure
- Mechanisms of action
 - ↑ GFR
 - $-\downarrow$ tubular reabsorption

Renal Function Tests

- Renal clearance: volume of blood plasma cleared of a waste in 1 minute
- Determine renal clearance (C) by assessing blood and urine samples: C = UV/P
 - U (waste concentration in urine)
 - V (rate of urine output)
 - P (waste concentration in plasma)
- Determine GFR: inulin is neither reabsorbed or secreted so for this solute GFR = renal clearance GFR = UV/P

Urine Storage and Elimination

- Ureters
 - from renal pelvis passes dorsal to bladder and enters it from below, about 25 cm long
 - 3 layers
 - adventitia CT
 - muscularis 2 layers of smooth muscle
 - urine enters, it stretches and contracts in peristaltic wave
 - mucosa transitional epithelium
 - lumen very narrow, easily obstructed

Urinary Bladder and Urethra - Female

Urinary Bladder

- Located in pelvic cavity, posterior to pubic symphysis
- 3 layers
 - parietal peritoneum, superiorly; fibrous adventitia rest
 - muscularis: detrusor muscle, 3 layers of smooth muscle
 - mucosa: transitional epithelium
- trigone: openings of ureters and urethra, triangular
- rugae: relaxed bladder wrinkled, highly distensible
- capacity: moderately full 500 ml, max. 800 ml

Female Urethra

- 3 to 4 cm long
- External urethral orifice
 - between vaginal orifice and clitoris
- Internal urethral sphincter
 - detrusor muscle thickened, smooth muscle, involuntary control
- External urethral sphincter
 - skeletal muscle, voluntary control

Male Bladder and Urethra

Voiding Urine - Micturition

- Micturition reflex
 - 1) 200 ml urine in bladder, stretch receptors send signal to spinal cord (S2, S3)
 - 2) parasympathetic reflex arc from spinal cord, stimulates contraction of detrusor muscle
 - 3) relaxation of internal urethral sphincter
 - 4) this reflex predominates in infants

Infant Micturition Reflex Diagram

Voluntary Control of Micturition

- 5) micturition center in pons receives stretch signals and integrates cortical input (voluntary control)
- 6) sends signal for stimulation of detrussor and relaxes internal urethral sphincter
- 7) to delay urination impulses sent through pudendal nerve to external urethral sphincter keep it contracted until you wish to urinate
- 8) valsalva maneuver
 - aids in expulsion of urine by \uparrow pressure on bladder
 - can also activate micturition reflex voluntarily

Adult Micturition Reflex Diagram

Hemodialysis

